Part Number Hot Search : 
2520S KBPC3501 AT89C5 5KE13 2SK2320 0T012 001456 7M3LH
Product Description
Full Text Search
 

To Download LT1013 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 LT1013/lt1014 quad precision op amp (lt1014) dual precision op amp (LT1013) the lt ? 1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin dip lm324/lm348/op-11/4156 pin configuration. it is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers. the lt1014s low offset voltage of 50 m v, drift of 0.3 m v/ c, offset current of 0.15na, gain of 8 million, common-mode rejection of 117db and power supply rejection of 120db qualify it as four truly precision operational amplifiers. particularly important is the low offset voltage, since no offset null terminals are provided in the quad configura- tion. although supply current is only 350 m a per amplifier, a new output stage design sources and sinks in excess of 20ma of load current, while retaining high voltage gain. similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the mc1458/ 1558, lm158 and op-221. the LT1013s specifications are similar to (even somewhat better than) the lt1014s. both the LT1013 and lt1014 can be operated off a single 5v power supply: input common-mode range includes ground; the output can also swing to within a few millivolts of ground. crossover distortion, so apparent on previous single-supply designs, is eliminated. a full set of specifi- cations is provided with 15v and single 5v supplies. features descriptio n u n single supply operation input voltage range extends to ground output swings to ground while sinking current n pin compatible to 1458 and 324 with precision specs n guaranteed offset voltage 150 m v max. n guaranteed low drift 2 m v/ c max. n guaranteed offset current 0.8na max. n guaranteed high gain 5ma load current 1.5 million min. 17ma load current 0.8 million min. n guaranteed low supply current 500 m a max. n low voltage noise, 0.1hz to 10hz 0.55 m vp-p n low current noisebetter than 0p-07, 0.07pa/ ? hz applicatio n s u n battery-powered precision instrumentation strain gauge signal conditioners thermocouple amplifiers instrumentation amplifiers n 4maC20ma current loop transmitters n multiple limit threshold detection n active filters n multiple gain blocks + lt1014 1 4 11 2 3 +5v +5v 1m 4k output a 10mv/ c + lt1014 7 6 5 1m output b 10mv/ c 4k 1.8k ysi 44007 5k at 25 c 260 1684 299k 3k lt1004 1.2v 14 12 13 + lt1014 use type k thermocouples. all resistors = 1% film. cold junction compensation accurate to 1 c from 0 c 60 c. use 4th amplifier for output c. lt1014 distribution of offset voltage 3 channel thermocouple thermometer input offset voltage ( v) 300 0 200 200 100 100 300 number of units 700 600 500 400 300 200 100 0 v s = 15v t a = 25 c 425 lt1014s (1700 op amps) tested from three runs j package , ltc and lt are registered trademarks of linear technology corporation.
2 LT1013/lt1014 supply voltage ...................................................... 22v differential input voltage ....................................... 30v input voltage ............... equal to positive supply voltage ............5v below negative supply voltage output short-circuit duration .......................... indefinite storage temperature range all grades ......................................... C 65 c to 150 c absolute m axi m u m ratings w ww u lead temperature (soldering, 10 sec.) ................. 300 c operating temperature range LT1013am/LT1013m/ lt1014am/lt1014m ...................... C 55 c to 125 c LT1013ac/LT1013c/LT1013d lt1014ac/lt1014c/lt1014d ................. 0 c to 70 c LT1013i/ lt1014i ............................... C 40 c to 85 c LT1013am/ac LT1013c/d/i/m symbol parameter conditions lt1014am/ac lt1014c/d/i/m units min typ max min typ max v os input offset voltage LT1013 40 150 60 300 m v lt1014 50 180 60 300 m v LT1013d/i, lt1014d/i 200 800 m v long term input offset voltage 0.4 0.5 m v/mo. stability i so input offset current 0.15 0.8 0.2 1.5 na i b input bias current 12 20 15 30 na e n input noise voltage 0.1hz to 10hz 0.55 0.55 m vp-p e n input noise voltage density f o = 10hz 24 24 nv/ ? hz f o = 1000hz 22 22 nv/ ? hz i n input noise current density f o = 10hz 0.07 0.07 pa/ ? hz package/order i n for m atio n w u u lt1014amj lt1014mj lt1014acj lt1014cj lt1014acn lt1014cn lt1014dn lt1014in order part number LT1013amh LT1013mh LT1013ach LT1013ch order part number LT1013amj8 LT1013mj8 LT1013acj8 LT1013cj8 LT1013acn8 LT1013cn8 LT1013dn8 LT1013in8 order part number order part number LT1013ds8 LT1013is8 part marking 1013 1013i order part number lt1014ds lt1014is part marking lt1014ds lt1014is electrical characteristics v s = 15v, v cm = 0v, t a = 25 c unless otherwise noted 1 2 3 4 8 7 6 5 top view output a ?n a +in a v v + output b ?n b +in b j package 8-lead ceramic dip n package 8-lead plastic dip + a + b + b top view output b v + output a ?n a in b +in b +in a v (case) 8 7 6 5 3 2 1 4 h package 8-lead to-5 metal can + a 1 2 3 4 5 6 7 top view j package 14-lead ceramic dip n package 14-lead plastic dip 14 13 12 11 10 9 8 output a ?n a +in a v + +in b ?n b output b output d ?n d +in d v +in c ?n c output c + a + d + b + c 1 2 3 4 8 7 6 5 top view ina outa v + outb +ina v +inb inb so package 8-lead plastic soic + + note: this pin configuration differs from the standard 8-pin dual-in-line configuration 1 2 3 4 5 6 7 8 top view so package 16-lead plastic soic 16 15 14 13 12 11 10 9 output a ?n a +in a v + +in b ?n b output b nc output d ?n d +in d v +in c ?n c output c nc
3 LT1013/lt1014 electrical characteristics v s = 15v, v cm = 0v, t a = 25 c unless otherwise noted LT1013am/ac LT1013c/d/i/m symbol parameter conditions lt1014am/ac lt1014c/d/i/m units min typ max min typ max input resistance C differential (note 1) 100 400 70 300 m w common-mode 5 4 g w a vol large signal voltage gain v o = 10v, r l = 2k 1.5 8.0 1.2 7.0 v/ m v v o = 10v, r l = 600 w 0.8 2.5 0.5 2.0 v/ m v input voltage range +13.5 +13.8 +13.5 +13.8 v C 15.0 C 15.3 C 15.0 C 15.3 v cmrr common-mode rejection ratio v cm = + 13.5v, C 15.0v 100 117 97 114 db psrr power supply rejection ratio v s = 2v to 18v 103 120 100 117 db channel separation v o = 10v, r l = 2k 123 140 120 137 db v out output voltage swing r l = 2k 13 14 12.5 14 v slew rate 0.2 0.4 0.2 0.4 v/ m s i s supply current per amplifier 0.35 0.50 0.35 0.55 ma note 1: this parameter is guaranteed by design and is not tested. typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 lt1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification. electrical characteristics LT1013am/ac LT1013c/d/i/m symbol parameter conditions lt1014am/ac lt1014c/d/i/m units min typ max min typ max v os input offset voltage LT1013 60 250 90 450 m v lt1014 70 280 90 450 m v LT1013d/i, lt1014d/i 250 950 m v i os input offset current 0.2 1.3 0.3 2.0 na i b input bias current 15 35 18 50 na a vol large signal voltage gain v o = 5mv to 4v, r l = 500 w 1.0 1.0 v/ m v input voltage range + 3.5 + 3.8 +3.5 + 3.8 v 0 C 0.3 0 C 0.3 v v out output voltage swing output low, no load 15 25 15 25 mv output low, 600 w to ground 5 10 5 10 mv output low, i sink = 1ma 220 350 220 350 mv output high, no load 4.0 4.4 4.0 4.4 v output high, 600 w to ground 3.4 4.0 3.4 4.0 v i s supply current per amplifier 0.31 0.45 0.32 0.50 ma v s + = + 5v, v s C = 0v, v out = 1.4v, v cm = 0v, t a = 25 c unless otherwise noted
4 LT1013/lt1014 v s = 15v, v cm = 0v, C 55 c t a 125 c unless otherwise noted electrical characteristics note 2: this parameter is not 100% tested. the l denotes specifications which apply over the full operating temperature range. LT1013am lt1014am LT1013m/lt1014m min typ max min typ max min typ max v os input offset voltage l 80 300 90 350 110 550 m v v s = + 5v, 0v; v o = + 1.4v C55 c t a 100 c l 80 450 90 480 100 750 m v v cm = 0.1v, t a = 125 c 120 450 150 480 200 750 m v v cm = 0v, t a = 125 c 250 900 300 960 400 1500 m v input offset voltage drift (note 2) l 0.4 2.0 0.4 2.0 0.5 2.5 m v/ c i os input offset current l 0.3 2.5 0.3 2.8 0.4 5.0 na v s = + 5v, 0v; v o = +1.4v l 0.6 6.0 0.7 7.0 0.9 10.0 na i b input bias current l 153015301845 na v s = + 5v, 0v; v o = +1.4v l 2080259028120 na a vol large signal voltage gain v o = 10v, r l = 2k l 0.5 2.0 0.4 2.0 0.25 2.0 v/ m v cmrr common-mode rejection v cm = +13.0v, C 14.9v l 97 114 96 114 94 113 db psrr power supply rejection v s = 2v to 18v l 100 117 100 117 97 116 db ratio v out output voltage swing r l = 2k l 12 13.8 12 13.8 11.5 13.8 v v s = +5v, 0v r l = 600 w to ground output low l 6 15 615 618 mv output high l 3.2 3.8 3.2 3.8 3.1 3.8 v i s supply current l 0.38 0.60 0.38 0.60 0.38 0.7 ma per amplifier v s = +5v, 0v; v o = +1.4v l 0.34 0.55 0.34 0.55 0.34 0.65 ma symbol parameter conditions units electrical characteristics v s = 15v, v cm = 0v, C40 c t a 85 c for LT1013i, lt1014i, 0 c t a 70 c for LT1013c, LT1013d, lt1014c, lt1014d unless otherwise noted LT1013c/d/i lt1014c/d/i min typ max min typ max min typ max v os input offset voltage l 55 240 65 270 80 400 m v LT1013d/i, lt1014d/i l 230 1000 m v v s = +5v, 0v; v o = 1.4v l 75 350 85 380 110 570 m v LT1013d/i, lt1014d/i v s = +5v, 0v; v o = 1.4v l 280 1200 m v average input offset (note 2) l 0.3 2.0 0.3 2.0 0.4 2.5 m v/ c voltage drift LT1013d/i, lt1014d/i l 0.75.0 m v/ c i os input offset current l 0.2 1.5 0.2 1.7 0.3 2.8 na v s = +5v, 0v; v o = 1.4v l 0.4 3.5 0.4 4.0 0.5 6.0 na i b input bias current l 132513251638 na v s = +5v, 0v; v o = 1.4v l 185520602490 na a vol large signal voltage gain v o = 10v, r l = 2k l 1.0 5.0 1.0 5.0 0.7 4.0 v/ m v cmrr common-mode rejection v cm = +13.0v, C 15.0v l 98 116 98 116 94 113 db ratio psrr power supply rejection v s = 2v to 18v l 101 119 101 119 97 116 db ratio v out output voltage swing r l = 2k l 12.5 13.9 12.5 13.9 12.0 13.9 v v s = +5v, 0v; r l = 600 w output low l 613 613 613 mv output high l 3.3 3.9 3.3 3.9 3.2 3.9 v i s supply current per amplifier l 0.36 0.55 0.36 0.55 0.37 0.60 ma v s = +5v, 0v; v o = 1.4v l 0.32 0.50 0.32 0.50 0.34 0.55 ma symbol parameter conditions units LT1013ac lt1014ac
5 LT1013/lt1014 typical perfor m a n ce characteristics u w offset voltage drift with temperature of representative units temperature ( c) ?0 input offset voltage ( v) 200 100 0 ?00 ?00 0 50 75 ?5 25 100 125 v s = 15v time after power on (minutes) 0 change in offset voltage ( v) 5 4 3 2 1 0 4 1 2 3 5 v s = 15v t a = 25 c LT1013 cerdip (j) package LT1013 metal can (h) package lt1014 warm-up drift balanced source resistance ( w ) 1k 3k 10k 30k 100k 300k 1m 3m 10m input offset voltage (mv) 10 1 0.1 0.01 v s = 5v, 0v, 55 c to 125 c v s = 15v, 0v, 55 c to 125 c v s = 5v, 0v, 25 c v s = 15v, 0v, 25 c + r s r s offset voltage vs balanced source resistance common-mode rejection ratio vs frequency 0.1hz to 10hz noise power supply rejection ratio vs frequency frequency (hz) 10 common-mode rejection ratio (db) 120 100 80 60 40 20 0 100 1k 10k 100k 1m v s = 5v, 0v v s = 15v t a = 25 c frequency (hz) 0.1 power supply rejection ratio (db) 120 100 80 60 40 20 0 100 10k 110 1k 100k 1m positive supply negative supply v s = 15v + 1v p-p sine wave t a = 25 c time (seconds) 0 noise voltage (200nv/div) 8 2 4 6 10 t a = 25 c v s = 2v to 18v 10hz voltage noise distribution noise spectrum supply current vs temperature frequency (hz) 1 voltage noise density (nv/ ? hz) current noise density (fa/ ? hz) 1000 100 10 300 30 10 100 1k current noise voltage noise 1/f corner 2hz t a = 25 c v s = 2v to 18v voltage noise density (nv/ ? hz) 10 number of units 200 180 160 140 120 100 80 60 40 20 0 50 20 30 40 60 v s = 15v t a = 25 c 328 units tested from three runs temperature ( c) ?0 supply current per amplifier ( a) 460 420 380 340 300 260 0 50 75 ?5 25 100 125 v s = 15v v s = 5v, 0v
6 LT1013/lt1014 typical perfor m a n ce characteristics u w input bias current (na) 0 common-mode input voltage, v s = +5v, 0v (v) 5 4 3 2 1 0 ? common-mode input voltage, v s = 15v (v) 15 10 5 0 ? 10 ?5 ? ?0 15 ?0 ?5 30 t a = 25 c v s = 5v, 0v v s = 15v input bias current vs common-mode voltage temperature ( c) ?0 input bias current (na) 30 25 20 15 10 ? 0 25 75 ?5 0 50 100 125 v cm = 0v v s = 5v, 0v v s = 15v v s = 2.5v temperature ( c) ?0 input offset current (na) 1.0 0.8 0.6 0.4 0.2 0 0 50 75 ?5 25 100 125 v cm = 0v v s = 5v, 0v v s = 2.5v v s = 15v input bias current vs temperature large signal transient response, v s = 15v 5v/div a v = +1 50 m s/div large signal transient response, v s = 5v, 0v a v = +1 10 m s/div no load input = 0v to 4v pulse 4v 2v 0v small signal transient response, v s = 15v 20mv/div a v = +1 2 m s/div large signal transient response, v s = 5v, 0v a v = +1 10 m s/div r l = 4.7k to 5v input = 0v to 4v pulse 4v 2v 0v output saturation vs sink current vs temperature temperature ( c) 50 25 0 25 50 75 100 125 saturation voltage (v) 10 1 0.1 0.01 v + = 5v to 30v v = 0v i sink = 10ma i sink = 5ma i sink = 1ma i sink = 100 a i sink = 10 a i sink = 0 a v = +1 20 m s/div r l = 600 w to ground input = 0v to 100mv pulse small signal transient response, v s = 5v, 0v 100mv 50mv 0 input offset current vs temperature
7 LT1013/lt1014 typical perfor m a n ce characteristics u w voltage gain vs frequency frequency (hz) 0.01 0.1 voltage gain (db) 1m 10m 110 100 1k 10k 100k 140 120 100 80 60 40 20 0 ?0 v s = 15v v s = 5v, 0v t a = 25 c c l = 100pf load resistance to ground ( ) 100 100k voltage gain (v/v) 1m 10m 1k 10k v o = 20mv to 3.5v with v s = 5v, 0v t a = 25 c, v s = 15v t a = 55 c, v s = 15v t a = 125 c, v s = 15v t a = 55 c, v s = 5v, 0v t a = 25 c, v s = 5v, 0v t a = 125 c, v s = 5v, 0v v o = 10v with v s = 15v output short circuit current vs time time from output short to ground (minutes) 0 short circuit current (ma) sinking sourcing 1 2 40 30 20 10 0 10 20 30 ?0 3 ?5 c 25 c 25 c 125 c 125 c ?5 c v s = 15v voltage gain vs load resistance applicatio n s i n for m atio n wu u u single supply operation the LT1013/1014 are fully specified for single supply operation, i.e., when the negative supply is 0v. input common-mode range includes ground; the output swings within a few millivolts of ground. single supply operation, however, can create special difficulties, both at the input and at the output. the LT1013/lt1014 have specific circuitry which addresses these problems. at the input, the driving signal can fall below 0v inad- vertently or on a transient basis. if the input is more than a few hundred millivolts below ground, two distinct prob- lems can occur on previous single supply designs, such as the lm124, lm158, op-20, op-21, op-220, op-221, op- 420: a) when the input is more than a diode drop below ground, unlimited current will flow from the substrate (v C termi- nal) to the input. this can destroy the unit. on the LT1013/ 1014, the 400 w resistors, in series with the input (see schematic diagram), protect the devices even when the input is 5v below ground. gain, phase vs frequency frequency (mhz) 0.1 0.3 voltage gain (db) 20 10 0 ?0 phase shift (degrees) 80 100 120 140 160 180 200 13 10 t a = 25 c v cm = 0v c l = 100pf phase 15v 5v, 0v 15v 5v, 0v gain channel separation vs frequency frequency (hz) 10 channel separation (db) 160 140 120 100 80 60 100k 100 1k 10k 1m limited by thermal interaction r s = 1k r s = 100 v s = 15v t a = 25 c v in = 20vp-p to 5khz r l = 2k limited by pin to pin capacitance
8 LT1013/lt1014 applicatio n s i n for m atio n wu u u (b) when the input is more than 400mv below ground (at 25 c), the input stage saturates (transistors q3 and q4) and phase reversal occurs at the output. this can cause lock-up in servo systems. due to a unique phase r eversal protection circuitry (q21, q22, q27, q28), the LT1013/ 1014s outputs do not reverse, as illustrated below, even when the inputs are at C1.5v. there is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the lt1014, is driven hard into negative saturation at the output. phase reversal protection does not work on amplifier: a when ds output is in negative saturation. bs and cs outputs have no effect. b when cs output is in negative saturation. as and ds outputs have no effect. c when bs output is in negative saturation. as and ds outputs have no effect. d when as output is negative saturation. bs and cs outputs have no effect. at the output, the aforementioned single supply designs either cannot swing to within 600mv of ground (op-20) or cannot sink more than a few microamperes while swing- ing to ground (lm124, lm158). the LT1013/1014s all-npn output stage maintains its low output resistance and high gain characteristics until the output is saturated. in dual supply operations, the output stage is crossover distortion-free. comparator applications the single supply operation of the LT1013/1014 lends itself to its use as a precision comparator with ttl compatible output: in systems using both op amps and comparators, the LT1013/1014 can perform multiple duties; for example, on the lt1014, two of the devices can be used as op amps and the other two as comparators. 4v LT1013/lt1014 no phase reversal 2v 4v 0v 6vp-p input, C 1.5v to 4.5v 4v lm324, lm358, op-20 exhibit output phase reversal v s = 5v, 0v 50 m s/div 4 2 0 C 100 0 v s = 5v, 0v 50 m s/div 2 0 0 100 input (mv) output (v) input (mv) output (v) voltage follower with input exceeding the negative common-mode range comparator rise response time 10mv, 5mv, 2mv overdrives comparator fall response time to 10mv, 5mv, 2mv overdrives 2v 2v 0v 0v 4
9 LT1013/lt1014 applicatio n s i n for m atio n wu u u low supply operation the minimum supply voltage for proper operation of the LT1013/1014 is 3.4v (three ni-cad batteries). typical supply current at this voltage is 290 m a, therefore power dissipation is only one milliwatt per amplifier. noise testing for applications information on noise testing and calcula- tions, please see the lt1007 or lt1008 data sheet. test circuit for offset voltage and offset drift with temperature + LT1013 or lt1014 +15v 15v 100 * 50k* 50k* v o resistor must have low thermoelectric potential. this circuit is also used as the burn-in configuration, with supply voltages increased to 20v. v o = 1000v os * ** typical applicatio n s u 50mhz thermal rms to dc converter + + lt1014 lt1014 8 10 9 7 4 11 6 5 0v?v output 10k* 10k* 10k* 10k* 10k 10k* 20k full- scale trim +5v + lt1014 14 13 12 10k* 100k* 0.01 0.01 + lt1014 1 2 3 100k* 0.01 300 * 30k* 1 f 1 f 10k 10k t1a t1b t2b t2a brn red red grn grn brn input 300mv? 10v rms +5v 2% accuracy, dc?0mhz. 100:1 crest factor capability. 0.1% resistor. t1?2 = yellow springs inst. co. thermistor composite #44018. enclose t1 and t2 in styrofoam. 7.5mw dissipation. * 30k* + 1/2 LT1013 8 4 7 5 6 +5v output a r2 r1 1 f 1 f 5 2 3 15 6 18 +input input + 1/2 LT1013 1 3 2 output b r2 r1 1 f 8 11 12 14 7 13 +input input 1/2 ltc1043 1/2 ltc1043 16 0.01 offset = 150 v gain = + 1. cmrr = 120db. common-mode range is 0v to 5v. r2 r1 1 f 5v single supply dual instrumentation amplifier
10 LT1013/lt1014 typical applicatio n s u + + a2 lt1014 6 5 7 6.98k* 1k* 5k flow calib 1 f 10m response time 100k 1m* + a1 lt1014 2 3 1 1m* 1m* 6.25k** 1m* t2 t1 3.2k* 3.2k** 6.25k** 15 dale hl-25 a4 lt1014 12 13 14 4 11 +15v ?5v 300pf 4.7k +15v output 0hz 300hz = 0 300ml/min 1n4148 + a3 lt1014 9 10 8 100k 100k 0.1 100k 383k* 2.7k ?5v lt1004 ?.2 2n4391 15 heater resistor flow flow pipe t1 t2 1% film resistor. supplied with ysi thermistor network. t1, t2 ysi thermistor network = #44201. flow in pipe is inversely proportional to resistance of t1?2 temperature difference. a1?2 provide gain. a3?4 provide linearized frequency output. * ** +15v hot wire anemometer + + + a4 lt1014 13 14 12 0v?0v = 0?000 feet/minute 10m response time adjust 1 f 1 f 100k a3 lt1014 9 8 10 500k 2m full- scale flow 12k a2 lt1014 6 7 5 150k* 2k q4 q5 q2 q3 1000pf 33k 2k q2?5 ca3046 pin 3 to 15v 1k zero flow 3.3k 15v 150k* +15v + a1 lt1014 2 1 3 q1 2n6533 220 500pf +15v 15v 4 11 0.01 f 10k* 27 1w 2k* #328 remove lamp's glass envelope from 328 lamp. a1 servos #328 lamp to constant temperature. a2-a3 furnish linear output vs flow rate. 1% resistor. * liquid flowmeter
11 LT1013/lt1014 typical applicatio n s u 5v powered precision instrumentation amplifier + lt1014 6 5 + lt1014 2 3 7 1 200k* 200k* rg (typ 2k) ? ? ? ? +5v +5v 20k 20k input +input + lt1014 13 12 14 10k 10k 10k* 10k* 10k* 10k* output 4 11 +5v + lt1014 9 10 8 to input cable shields 1% film resistor. match 10k's 0.05% gain equation: a = + 1. for high source impedances, use 2n2222 as diodes. 400,000 rg *  ? 1 f 9v battery powered strain gauge signal conditioner + lt1014 13 12 14 + lt1014 6 5 7 + lt1014 9 10 8 100k 100k 499 499 350 strain gauge bridge to a/d ratio reference 2n2219 330 0.01 4.7k 47 f +9v to a/d 22m + lt1014 2 3 1 1n4148 100k 100k 100k 0.068 15k 0.068 0.068 15k 3k 15 14 7 6 13 9 +9v to a/d convert command 1 5 +9v 4 11 74c221 +9v sampled operation gives low average operating current ? 650 a. 4.7k?.01 f rc protects strain bridge from long term drifts due to high d v/ d t steps.
12 LT1013/lt1014 typical applicatio n s u 5v powered motor speed controller no tachometer required + a1 1/2 LT1013 2 3 1 6 5 7 100k 0.47 330k 1m 6.8m 2k 0.068 + a2 1/2 LT1013 5v 8 4 e in 0v?v 2k 3.3m q1 2n3904 0.47 0.068 q2 1n4148 1n4148 2k 82 1k +5v q3 2n5023 + 1n4001 1n4001 47 motor = canon?n30?13n1b. a1 duty cycle modulates motor. a2 samples motors back emf. 1/4 cd4016 + LT1013 6 5 7 8 4 1k 4.7m 120k 2n2222 output 100k* 6.19k 0.005 + LT1013 2 3 1 1n4148 lt1004 1.2v 100k 100 10 20k 0.33 0.1 +5v 1n4148 1n4148 1n4148 0.05 2n2222 2n2222 2n2222 4.7k 820 270 820 1n4148 ttl input 1n4148 +5v meets all v pp programming specs with no trims and runs off 5v supply?o external high voltage supply required. suitable for battery powered use (600 a quiescent current). 1% metal film. * 600 s rc 21v dale #tc-10-04 5v powered eeprom pulse generator
13 LT1013/lt1014 typical applicatio n s u methane concentration detector with linearized output + + 13 12 14 a4 lt1014 74c04 74c04 74c04 470pf 10k 470pf +5v ?v 1n4148 output 500ppm-10,000ppm 50hz 1khz 2k 1n4148 ( 4) + 6 5 7 a2 lt1014 q4 q3 q2 q1 150k* 2k 1000pf 100k* + 2 3 1 a1 lt1014 4 +5v 5k 1000ppm trim 12k* ltc1044 10 f 423 58 +5v sensor 9 10 8 a3 lt1014 11 100k* 390k* lt1004 1.2v 10 f + 0.033 14 1 ?v +5v cd4016 1% metal film resistor sensor = calectro-gc electronics #j4-807 or figaro #813 * ?v + ca3046 1 14 2.7k low power 9v to 5v converter + LT1013 1 2 3 330k +9v lt1004 1.2v 120k 1% 390k 1% 5v 20ma 2n5434 + LT1013 7 5 6 hp5082-2811 100 a 8 4 +9v 47k + 47 1n4148 l 10k 10k 2n2905 l = dale te-3/q3/ta. short circuit current = 30ma. ? 75% efficiency. switching preregulator controls drop across fet to 200mv. +9v input v d = 200mv
14 LT1013/lt1014 typical applicatio n s u 5v powered 4maC20ma current loop transmitter ? + a2 1/2 LT1013 3 2 1 + a1 1/2 LT1013 6 5 7 100k 4.3k +5v 8 4 lt1004 1.2v +5v 10 f 4ma-20ma out fully floating 8-bit accuracy. ? 0.1 68k* 301 * 1k 20ma trim 4k* 10k* 2k 4ma trim input 0v?v to inverter drive + t1 1n4002 (4) fully floating modification to 4ma-20ma current loop ? + a2 1/2 LT1013 6 5 7 + a1 1/2 LT1013 2 3 1 input 0 to 4v 1k 4ma trim 4k* 10k* 4.3k +5v 8 4 lt1004 1.2v 2k q4 2n2222 100pf +5v 0.33 100k 10k* 80k* 10k* 20ma trim 10 f q1 2n2905 q2 2n2905 10k 10k 0.002 820 820 10 f + 100 * 4ma-20ma out to load 2.2k maximum 68 q3 2n2905 +5v 12-bit accuracy. 1% film. t1 = pico-31080. ? * 1n4002 (4) t1 + 74c04 (6)
15 LT1013/lt1014 typical applicatio n s u 5v powered, linearized platinum rtd signal conditioner + a4 1/4 lt1014 9 10 8 output 0v?v = 0 c?00 c 0.05 c gain trim 1k 3.01k 150 + a2 1/4 lt1014 2 3 1 + a3 1/4 lt1014 6 5 7 2m 5k linearity 200k 200k 2m 50k zero trim 8.25k 274k 10k + a1 1/4 lt1014 13 12 14 +5v 4 11 250k 2.4k 5% lt1009 2.5v +5v sensor q2 q1 167 499 1.5k rosemount 118mf all resistors are trw-mar-6 metal film. ratio match 2m?00k 0.01%. trim sequence: set sensor to 0 value. adjust zero for 0v out. set sensor to 100 c value. adjust gain for 1.000v out. set sensor to 400 c. adjust linearity for 4.000v out, repeat as required. 2n4250 (2) strain gauge bridge signal conditioner + 1/2 LT1013 5 6 7 0.047 2k gain trim 46k* 100 * output 0v?.5v 0psi?50psi 0.33 100k 10k zero trim a d e c 301k v ref 220 +5v 1.2v out reference to a/d converter for ratiometric operation 1ma maximum load + 2 3 1 39k 8 4 +5v 1/2 LT1013 0.1 8 5 2 4 + 100 f + 100 f pressure transducer 350 v ? ref ltc1044 1% film resistor. pressure transducer?lh/dhf?50. circled letter is pin number. * lt1004 1.2v
16 LT1013/lt1014 typical applicatio n s u lvdt signal conditioner + LT1013 1 3 2 200k 10k out 0v?v 1 f 100k 14 8 13 13 7 12 11 blk grn blue rd- blue + lt1011 7 2 3 1/2 ltc1043 1 8 4 1k +5v to pin 16, lt1043 100k 7.5k 0.01 100k phase trim lvdt yel-blk + LT1013 7 5 6 +5v ?v 0.005 0.005 30k 30k 10k 4.7k 1.2k 1n914 lt1004 1.2v + 10 f 2n4338 lvdt = schaevitz e-100. frequency = 1.5khz yel-rd triple op amp instrumentation amplifier with bias current cancellation + 1/4 lt1014 9 10 8 output + 1/4 lt1014 6 5 7 + 1/4 lt1014 12 13 14 4 11 r3 r2 r2 r1 r g r1 + 1/4 lt1014 2 3 1 v v + 100k 10pf 2r 10m r 5m +input ?nput r3 gain = 1 + () 2r1 r g r3 r2 input bias current typically <1na input resistance = 3r = 15m for values shown negative common-mode limit = v + i b 2r + 30mv = 150mv for v = 0v i b = 12na 2r 10m
17 LT1013/lt1014 typical applicatio n s u voltage controlled current source with ground referred input and output + LT1013 6 5 7 + LT1013 2 8 4 3 1 1m 1.4m 82k 0.005 2n5114 2n4391 lt1004 1.2v 100k +6v +16v ?6v 0.005 10 +15v out 15v out 200k v out adj + 15pf 15pf 1 f 10 + +16v 16v l1 1mhy 2n3904 2n3906 10k 10k 10k 22k 22k 10k +v q1 clk 2 d1 q1 q2 d2 clk 1 q2 74c74 + 100khz input l1 = 24-104 aie vernitron 5ma output 75% efficiency +6v 74c00 +6v = 1n4148 + LT1013 3 2 1 8 4 + a2 LT1013 6 5 7 1m lt1004 1.2v 1.2k 1n914 0.01 100k 100 120k 30k v batt 6v 0.003 f 5v output 50k output adjust 10 245 38 ltc1044 100 1n914 +12 output 10 2n2219 0.009v dropout at 5ma output. 0.108v dropout at 100ma output. i quiescent = 850 a. + + low dropout regulator for 6v battery + 1/2 LT1013 3 2 1 8 4 +5v 0v?v 1 f 8 11 12 14 7 13 1/2 ltc1043 0.68 f 1k 100 1 f i out = 0ma to 15ma i out = v in 100 for bipolar operation, run both ics from a bipolar supply. 6v to 15v regulating converter
18 LT1013/lt1014 typical applicatio n s u + 1/2 LT1013 1 8 4 3 2 + 1/2 LT1013 7 6 5 +5v 1m* 5m* 20k 4.22m* 4.22m* 100k +5v 1m* r t1 3.2k 1m* r t2 6.25k r t ysi 44201 2.16k* 3.4k* 4.3k temperature compensation generator lt1009 2.5v +5v 680 100 100k 560k mv-209 3.5mhz xtal oscillator supply stabilization oscillator 510pf 510pf 3.5mhz output 0.03ppm/ c, 0 c?0 c 2n2222 1% film 3.5mhz xtal = at cut ?35 20' mount r t near xtal 3ma power drain thermistor-amplifier-varactor network generates a temperature coefficient opposite the crystal to minimize overall oscillator drift * ? low power, 5v driven, temperature compensated crystal oscillator (txco) ? step-up switching regulator for 6v battery + + LT1013 5 8 4 6 7 LT1013 3 2 1 0.1 200k lt1004 1.2v 130k 300 output +15v 50ma input +6v + 100 1n5821 2n5262 l1 1mhy + 2.2 5.6k 5.6k 220pf 220k 1m 22k 2n2222 0.001 lt = aie?ernitron 24?04 78% efficiency
19 LT1013/lt1014 sche m atic diagra m w w 1/2 LT1013, 1/4 lt1014 9k 9k 1.6k 5k 2k 5k q5 q6 1.6k q16 q30 q14 q13 q3 q4 q1 q21 400 q2 q22 400 q12 q11 1.6k q15 100 2k q9 q7 q29 q17 1.3k q20 q26 10pf q8 q23 q31 3.9k 21pf 2.5pf q32 1k q18 q19 q25 2.4k 18 100pf 4pf 2k 75pf q24 30 42k 14k q33 q34 q37 q38 q40 j1 q39 q41 600 800 v v + in in q10 output q35 q36 q27 q28 + j8 package 8-lead cerdip (narrow 0.300, hermetic) (ltc dwg # 05-08-1110) n8 package 8-lead pdip (narrow 0.300) (ltc dwg # 05-08-1510) j8 0694 0.014 ?0.026 (0.360 ?0.660) 0.200 (5.080) max 0.015 ?0.060 (0.381 ?1.524) 0.125 3.175 min 0.100 0.010 (2.540 0.254) 0.300 bsc (0.762 bsc) 0.008 ?0.018 (0.203 ?0.457) 0 ?15 0.385 0.025 (9.779 0.635) 0.005 (0.127) min 0.405 (10.287) max 0.220 ?0.310 (5.588 ?7.874) 12 3 4 87 65 0.025 (0.635) rad typ 0.045 ?0.068 (1.143 ?1.727) full lead option 0.023 ?0.045 (0.584 ?1.143) half lead option corner leads option (4 plcs) 0.045 ?0.068 (1.143 ?1.727) note: lead dimensions apply to solder dip/plate or tin plate leads. n8 0695 0.005 (0.127) min 0.100 0.010 (2.540 0.254) 0.065 (1.651) typ 0.045 ?0.065 (1.143 ?1.651) 0.130 0.005 (3.302 0.127) 0.015 (0.380) min 0.018 0.003 (0.457 0.076) 0.125 (3.175) min 12 3 4 87 6 5 0.255 0.015* (6.477 0.381) 0.400* (10.160) max 0.009 ?0.015 (0.229 ?0.381) 0.300 ?0.325 (7.620 ?8.255) 0.325 +0.025 0.015 +0.635 0.381 8.255 () *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed 0.010 inch (0.254mm) t j max 150 c q ja 100 c/w t j max 100 c q ja 130 c/w information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
20 LT1013/lt1014 package descriptio n u h package 8-lead to-5 metal can (0.200 pcd) (ltc dwg # 05-08-1320) linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 l fax : (408) 434-0507 l telex : 499-3977 lt/gp 0196 rev a ? printed in usa ? linear technology corporation 1990 0.050 (1.270) max 0.016 ?0.021** (0.406 ?0.533) 0.010 ?0.045* (0.254 ?1.143) seating plane 0.040 (1.016) max 0.165 ?0.185 (4.191 ?4.699) gauge plane reference plane 0.500 ?0.750 (12.700 ?19.050) 0.305 ?0.335 (7.747 ?8.509) 0.335 ?0.370 (8.509 ?9.398) dia 0.200 (5.080) typ 0.027 ?0.045 (0.686 ?1.143) 0.027 ?0.034 (0.686 ?0.864) 0.110 ?0.160 (2.794 ?4.064) insulating standoff 45 typ h8(to-5) 0.200 pcd 0595 lead diameter is uncontrolled between the reference plane and 0.045" below the reference plane for solder dip lead finish, lead diameter is 0.016 ?0.024 (0.406 ?0.610) * ** note: dimensions in inches (millimeters) t j max 150 c q ja 150 c/w q jc 45 c/w s16 (wide) 0695 note 1 0.398 ?0.413* (10.109 ?10.490) 16 15 14 13 12 11 10 9 1 23 4 5 6 78 0.394 ?0.419 (10.007 ?10.643) 0.037 ?0.045 (0.940 ?1.143) 0.004 ?0.012 (0.102 ?0.305) 0.093 ?0.104 (2.362 ?2.642) 0.050 (1.270) typ 0.014 ?0.019 (0.356 ?0.482) typ 0 ?8 typ note 1 0.009 ?0.013 (0.229 ?0.330) 0.016 ?0.050 (0.406 ?1.270) 0.291 ?0.299** (7.391 ?7.595) 45 0.010 ?0.029 (0.254 ?0.737) note: 1. pin 1 ident, notch on top and cavities on the bottom of packages are the manufacturing options the part may be supplied with or without any of the options. dimension does not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side dimension does not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side * ** 1 2 3 4 0.150 ?0.157** (3.810 ?3.988) 8 7 6 5 0.189 ?0.197* (4.801 ?5.004) 0.228 ?0.244 (5.791 ?6.197) 0.016 ?0.050 0.406 ?1.270 0.010 ?0.020 (0.254 ?0.508) 45 0 ?8 typ 0.008 ?0.010 (0.203 ?0.254) so8 0695 0.053 ?0.069 (1.346 ?1.752) 0.014 ?0.019 (0.355 ?0.483) 0.004 ?0.010 (0.101 ?0.254) 0.050 (1.270) bsc dimension does not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side dimension does not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side * ** s8 package 8-lead plastic small outline (narrow 0.150) (ltc dwg # 05-08-1610) sw package 16-lead plastic small outline (wide 0.300) (ltc dwg # 05-08-1620) j package 14-lead cerdip (narrow 0.300, hermetic) (ltc dwg # 05-08-1110) j14 0694 0.045 ?0.068 (1.143 ?1.727) 0.100 0.010 (2.540 0.254) 0.014 ?0.026 (0.360 ?0.660) 0.200 (5.080) max 0.015 ?0.060 (0.381 ?1.524) 0.125 (3.175) min 0.300 bsc (0.762 bsc) 0.008 ?0.018 (0.203 ?0.457) 0 ?15 0.385 0.025 (9.779 0.635) 1 234 56 7 0.220 ?0.310 (5.588 ?7.874) 0.785 (19.939) max 0.005 (0.127) min 14 11 8 9 10 13 12 0.025 (0.635) rad typ note: lead dimensions apply to solder dip or tin plate leads. 0.045 ?0.068 (1.143 ?1.727) full lead option 0.023 ?0.045 (0.584 ?1.143) half lead option corner leads option (4 plcs) n package 14-lead pdip (narrow 0.300) (ltc dwg # 05-08-1510) n14 0695 0.015 (0.380) min 0.125 (3.175) min 0.130 0.005 (3.302 0.127) 0.045 ?0.065 (1.143 ?1.651) 0.065 (1.651) typ 0.018 0.003 (0.457 0.076) 0.100 0.010 (2.540 0.254) 0.005 (0.125) min 0.255 0.015* (6.477 0.381) 0.770* (19.558) max 3 1 2 4 5 6 7 8 9 10 11 12 13 14 0.009 ?0.015 (0.229 ?0.381) 0.300 ?0.325 (7.620 ?8.255) 0.325 +0.025 0.015 +0.635 0.381 8.255 () *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed 0.010 inch (0.254mm) t j max 150 c q ja 100 c/w t j max 100 c q ja 100 c/w


▲Up To Search▲   

 
Price & Availability of LT1013

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X